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Abstract. Two specific potential-well problems have been solved exactly, firstly, a half- 
space harmonic oscillator with a finite-potential step and secondly, a full-space harmonic 
oscillator with an infinite wall located at a finite distance from the origin. The purpose 
of these studies is to investigate the limiting situations when (i) the finite-potential step 
in the first case is very high compared with the energy eigenvalues of the low-lying states 
and (ii) the infinite-potential wall in the second case is at a great distance from the origin 
where the amplitudes of the wavefunctions of the low-lying states are vanishingly small. 
The numerical results have been compared with the analytical expressions obtained from 
the perturbation schemes devised by Lee and Mei in previous work. Excellent agreements 
are obtained. General implications and applications are also discussed. 

1. Introduction 

Two novel perturbation schemes have recently been devised (Lee and Mei 1982). 
The first was used to treat the effects of a potential wall of great height Vo, starting 
from the unperturbed case where Vo -+ 00, and the second was used to treat the effect 
of a remote infinite-potential barrier by constructing a pseudo-potential fip, which is 
shown to reproduce the effects of the barrier. New procedures are then developed 
to handle the perturbative effects of fip. In these cases, standard perturbation 
approaches are no longer valid, therefore, both schemes are unconventional. 

These perturbation methods are very useful when handling the impurity states and 
exciton states with an additional boundary condition (ABC), such as an impurity centre 
or exciton confined in a semi-infinite or finite slab. The effects of the boundary are 
always difficult to treat in these cases. Levine (1965), Bastard (1981) and D’Andrea 
and Del Sole (1982) treated the effects of the surface using the variational method 
which is usually conjectural, the errors involved being difficult to estimate. Using 
these perturbative approaches the corrections to the eigenenergies and wavefunctions 
can be easily obtained. 

The purpose of this work is to use the exact solutions of the well known problems 
to demonstrate the potential applications of these two perturbation schemes. Physicists 
have long known that one of the few exactly soluble problems is that of the harmonic 
oscillator (Schrodinger 1926) and it follows that the approximately soluble problems 
are those that can be studied by perturbing the oscillator. In 00  2.1 and 2.2, we solve 
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exactly two specific potential-well problems associated with harmonic oscillators: 
firstly, a half-space harmonic oscillator with a finite-potential step and secondly, a 
full-space harmonic oscillator with an infinite wall located at a finite distance from 
the origin. The numerical results of the above problems, in the limiting situations 
when the finite step is very high compared with the eigenenergies of the low-lying 
states and the infinite wall is at a great distance from the origin where the wavefunctions 
of the low-lying states are almost vanished, are compared with the analytical 
expressions obtained from the perturbation schemes in § 3 and excellent agreements 
are obtained. Further remarks and discussions are included in the last section. 

2. Exact solutions 

2.1. Half-space harmonic oscillator with a finite potential step 

The Schrodinger equations for the potential V ( x )  shown in figure 1 are given by 

x < o  

where @ is the mass of the particle, w the classical frequency of the harmonic oscillator, 
Vo the height of the potential wall, E the eigenenergy and qR and qJT, the wavefunctions 
in the regions x > 0 and x < 0. 

In the regions where x < 0, the wavefunctions can be easily obtained: 

q L = A  ekx 

where 

k = {[2p (Vo -E)] /h2}”2  

I 
i 

Figure 1. One-dimensional half-space harmonic-oscillator potential well with a finite 
potential step V,. 
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and A is the normalisation constant of the wavefunction. We only adopt the decaying 
solution in order to justify the asymptotic behaviour requirement as x + -W. As x >0, 
we have 

then 

Compare equation ( 5 )  with the Weber equation (Morse and Feshbach 1953) 

d21q -+((m+I-az 1 1 2  ) \ I r = O ;  
dz 

correspondingly, we have 
1 E/hw = m +i. 

The solution of equation ( 5 )  is then the well known Weber function 

where F ( a  16 Ix) is the confluent hypergeometric function (Abramowitz and Stegun 
1964) defined as 

a a ( a + l )  a (a + l ) (a  +2) 
b 

F(alblx) = 1 +-x + x + . . .  
2! b ( b  + 1) x 2  +3!  b (b  + 1)(b + 2 )  

and r ( z )  is the gamma function (Abramowitz and Stegun 1964) defined as 
03 

T(z) = tz-' e-' dt for Re z > 0. 
0 

The recursion relations for the Weber function D,(z) are 

D m + l ( z )  - Z D m ( z )  +mDm-i(z) = 0 

(d/dz)Dm(Z) -4zDm (Z  ) + D m + l ( ~ )  = 0 

(d/dz)D,(z)+tzD,(z)-mDm-l(z) = O .  

(9) 

In general, m is not an integer. 

asymptotic behaviour of D,(z) is given by 
The function D,( z )  is chosen to vanish as z + CO, but not usually as z + -a. The 
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unless m is zero or a positive integer, in which case 

D,(t)  = ( - l )V, ( -z ) .  (13) 

In order to have a wavefunction which is quadratically integrable, we must have 
m = 0, 1 , 2 .  . . , which limits the energy levels of the linear harmonic oscillator to 
discrete allowed values 

When m is a positive integer, the Weber function becomes proportional to the Hermite 
polynomials 

(15) D m  (2) = 2,’’ exp(- i z  ’ )H,  ( z /  JZ) 
where H,(z) are the Hermite polynomials. 

Then we can easily see that the Weber function (8) satisfies the asymptotic 
behaviour of this problem at both x + *a. The next step is to match the logarithmic 
derivatives of the wavefunctions qR and qL at x = 0. 

In the region x < 0, the logarithmic derivative is 

( ~ h ) / P L ( X ) ) l x = O  = ~ [ 2 P ~ ~ o - ~ ) l / h 2 1 ” 2 .  (16) 

In the region x >0, making use of the recursion relations of the Weber functions 
equation (1 l ) ,  we have 

E I x = , = - J G 2  (m+1)’2(JG/r($-$(m + 1))) 
P 2 ( J G / r ( $ - - $ m ) )  

Then the energy eigenvalues can be determined from the equation 

where 

U0 = Vo/ho. 

In order to solve equation (18) we have to use the identity of the gamma function 

- 

Let 

The numerical solutions of m can be obtained if the value of uo is given. We have 
plotted the graphic solutions of m in figure 2 for several values of oo. It is obvious 
that as uo + CO, the only possible solutions for m are the odd positive integers, which 
is exactly the case for a half-space harmonic oscillator with an infinite-potential wall. 
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Figure 2. The graphic solutions of equation (18) for different values of uo where ( i )  
uo = 150, ( i i )  uo = 50 and ( i i i )  to = 10. 

2.2. Full-space harmonic oscillator with an infinite wall located at a finite distance 
from the origin 

Now let us consider the Schrodinger equation for the potential V ( x )  shown in 
figure 3:  

U ( X )  = 0 x < -r. 

The solution for the wavefunction T in the region x > -r is still the Weber function 

Figure 3. One-dimensional full-space harmonic-oscillator potential well with an infinite 
wall located at a distance r from the origin. 
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equation (8) 

where 

WNMeiand YCLee  

In order to satisfy the boundary condition at x = -r, however, we require 

Solving the above equation for given values of R,  we can determine the eigenvalues 
of this potential-well problem. As the infinite wall is located on the right-hand side, 
D,(-z) is adopted as the wavefunction in order to obtain the correct asymptotic 
behaviour as x + fm. The final results, however, remain the same. 

As R " 0 ,  we can easily see that the only possible solutions are m to be the odd 
positive integers, which is exactly the case for the half-space harmonic oscillator. As 
R + a?, we have to use the asymptotic expressions for the confluent hypergeometric 
functions. Since 

F(alb lz )  = ~ e ' r a - b [ l + ~ ( ~ / z ) l  for Re z > O  (23) r ( a  1 
we define 

F(-&&R2) hRF( t - imI$l$R2)  + r(- i m )  f h R ) =  r(' 1 
2-2m) 

Then, as R is very large, the asymptotic expression for f (m,  R )  is given by 

Therefore, the values of m have to be positive integers in order to satisfy the equation 
f(m, R ) = 0. This reduces to the case of a full-space harmonic oscillator. The numerical 
solutions of m can be obtained for a given R and are plotted in figure 4. 

Figure 4. The graphical solutions of equation (22) as a function of R. 
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3. Perturbative treatments 

In the first case, as the height of the finite step Vo is very large compared with the 
eigenvalues of the low-lying states, the exact solutions are very close to those for the 
case Vo-,mo. The difference, as mentioned by Lee and Mei (1982), is proportional 
to S/a, where S -- [h2/2p ( VO-E) ]”~  corresponds to the penetration depth of the 
wavefunction into the finite-potential wall. Here a is the characteristic size and E 
the eigenenergy of the hard-welled eigenfunctions. 

The unperturbed eigenfunctions $io’ ( x  ) and eigenvalues €Lo’ corresponding to the 
limiting case VO + CC are well known, being just those associated with the odd-parity 
solutions for the harmonic oscillator in full space, with no wall. According to the 
previous work we replace the infinite wall at x = 0 with an infinite one at x = -8‘“). 
The equivalent hard-well problem has 

x > 1 2 2  

V ( x ) = ( Z W  x < -g‘O’ 

with 

(27) 

To relate this problem to the unperturbed case we perform a change of variable 

8‘’’ = [h2/2p (Vo - E io’ )] 1/2 

where E‘’’ is the unperturbed energy eigenvalue. 

from x to y = x +a‘’’. The equivalent problem then becomes 

Obviously, we may now divide the Hamiltonian, in the new variable y, into the 
unperturbed part HO and the perturbation term H ’ :  

H ’ =  - p ~ ~ S ‘ ~ ’ y  + 0 [ ( S ‘ 0 ’ ) 2 ] .  (29) 

Note that the term H’ itself depends, through Si’’, on the unperturbed energy. The 
energy corrections AE” due to the finiteness of the wall Vo at x = 0 can be obtained 
immediately from 

Ho=---+’ h2 d2 H = HQ + H’ 2p dy2 2bW2y2 

m 

AEn = I, l//n*‘O’(y)H’$Lo’(y) dy = - - p ~ ~ S ( ~ ’ ( y )  = - Y ~ € ( ~ O ’ / ( U ~ ) ’ / ~  (30) 

where 

n = 1,3, 5 (32) E!,’’ = (n + $ ) j w  

U“ = (vo-E:o’) /hw (33) 

y1 = ;(27r- ll2 y3 = 9 ( 2 7 p 2  y5 = g ( 2 7 p 2  

y7 = & ( 2 T p 2  y g  = %(2r)-ll2 y11 = i%$(2T)-’/2. 

and the first six values of yn are 

(34) 
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We can easily observe that the energy corrections are proportional to the spatial 
spreads of the wavefunctions. As expected from the variational principle, the energy 
corrections are all negative. We also solved equation (18) numerically for different 
values of u0 and tabulated the comparisons with the yn obtained from equation (34) 
in table 1.  We found excellent agreement for a wide range of values of UO. 

In the second case, when the infinite wall is a great distance from the centre of 
the harmonic oscillator well, where the amplitudes of the low-lying state wavefunctions 
are vanishingly small, it is clear physically that the exact solution is very close to that 
obtained when the infinite potential wall is infinitely far away from the origin. It is 
not easy, however, to find the difference between these two. 

In  our previous work (Lee and Mei 1982) we proposed a pseudo-potential kps 
where 

(35) A,, = (h2/2p ) S  (x + r)(d/dx)x=-r+E 

Table 1. Comparison of the exact numerical solutions from equation (18) and the 
perturbation results from equation (34) on the energy correction of the half-space harmonic 
oscillator with a finite potential step Vo, where c 0 =  V o / h w .  

t ' 0  yn I numerical results) y,, (perturbation results) 

1 x l o t o  0.531 922 
0.341 950 
0.272 006 
0.232 716 
0.206 689 
0.187 817 

1 x lo8 0.531 910 
0.341 945 
0.272 002 
0.232 713 
0.206 687 
0.187 815 

1 x lo6 0.531 793 
0.341 893 
0.271 970 
0.232 690 
0.206 668 
0.187 800 

1 x io4 0.530 594 
0.341 337 
0.271 589 
0.232 389 
0.206 410 
0.187 569 

1 x lo2 0.516 244 
0.332 146 
0.263 209 
0.223 990 
0.197 719 
0.178 471 

0.531 923 
0.341 951 
0.272 006 
0.232 716 
0.206 689 
0.187 817 

0.531 923 
0.341 951 
0.272 006 
0.232 716 
0.206 689 
0.187 817 

0.531 923 
0.341 951 
0.272 006 
0.232 716 
0.206 689 
0.187 817 

0.531 923 
0.341 951 
0.272 006 
0.232 716 
0.206 689 
0.187 817 

0.531 923 
0.341 951 
0.272 006 
0.232 716 
0.206 689 
0.187 817 
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and showed that ti,, reproduces the effect of the infinite barrier. That is, if we treat 
literally the pseudo-potential together with the original problem it is equivalent to 
solving exactly the Schrodinger equation with its boundary condition. But in the case 
when d >>a-”’, that is when the infinite wall is far away from the important region 
of the potential well, we can perform perturbative calculation on the energy corrections 
by using the technique developed in the previous work (Lee and Mei 1982).  This 
perturbation scheme is not the same as the conventional method as we show that the 
zeroth-order wavefunction and the perturbed wavefunction are of the same order of 
magnitude near the vicinity of the infinite wall. Therefore, the energy correction is 
shown to be 

AE, = 2(4ip’ ~fips~$~o)). ( 3 6 )  

The important difference between this perturbation method and the ordinary perturba- 
tion method is that we also have to include the expectation value of the perturbed 
Hamiltonian on the perturbation wavefunction, which is considered to be negligible 
in ordinary perturbation schemes. Thus, we have calculated the first four energy 
corrections PE,, for the harmonic oscillator potential. 

Since we have 

E,,=E!,o’+AE, ( 3 7 )  

where ELo) = ( n  + t ) h w  and AE,, = K , ~ o ,  n = 0 ,  1 , 2 , 3  . . . then 

= f ( 2 T ) - 1 / 2 ~  e-R2/2  ~1 = ; ( ~ T ) - ~ ” R  (R2-  2 )  e -R2/2 

( 3 8 )  K2=4(2T) -1 /2 (R2-  1 1 ) ( R 3 - 5 R )  

K 3  = E ( ~ T )  1 -1 /2  ( R 3 - 3 R ) ( R 4 - 9 R 2 + 6 )  

The comparison with the exact numerical results is in table 2. The agreements are 
good for large values of R. This is because in arriving at equation ( 3 6 )  we have 
assumed that the wavefunction decays exponentially away from the important region, 
whereas in this case the wavefunctions are enveloped by a Gaussian function. There- 
fore, we observe that the perturbation results are slightly overestimated. The agree- 
ments improve as the distance R gets larger. 

4. Discussion 

We have solved two specific potential problems exactly, (i) a half-space harmonic 
oscillator with a finite potential step and (ii) a full-space harmonic oscillator with an 
infinite potential wall located at a finite distance from the origin. Then we used the 
perturbation schemes developed in previous work and demonstrated the excellent 
agreement between the exact results and the perturbation calculations when (i) the 
finite potential step is very high compared with the eigenenergies of the low-lying 
states and (ii) the infinite potential wall is very far away from the essential region of 
the potential well. 

Even though all the calculations performed in this paper are one dimensional, the 
methods themselves are very general in nature and can be extended easily to the 
three-dimensional case. 
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Table 2. Comparison of the exact numerical solutions and the perturbation results on the 
energy correction of the full-space harmonic oscillator with an infinite potential wall 
located at a distance r from the origin, where R = J2ar .  In each block the first number 
is the exact numerical result from equation (22), the second is the perturbation result 
from equation 138) and the third is the ratio of these two numbers. 

R m = O  m = l  m = 2  in = 3  

4.2 

4.8 

5.4 

6.0 

6.6 

7.2 

7.8 

8.4 

2.312 1 8 0 ~  
2.475 008 x 

10.9340) 

1.809 315 x lo-' 
1.901 423 x 

(0.95 16) 

9.656 544 x 
1.002 975 x 

(0.9628) 

3.537 631 x 
3.645 528 x lo-' 

(0.9704) 

8.930 985 x lo-'' 
9.152 086x lo-'' 

(0.9758) 

3.733 496 x 1 0 - ~  
4.000 595 x 

(0.9332) 

2.595 0 8 4 ~  
2.724 081 X 

(0.9526) 

1.195 248x 
1.239 480 x 

(0.9643) 

3.696 796 x lo-' 
3.803 606x 

(0.9719) 

7.742 837 x lo-'' 
7.923 326 x lo-'' 

(0.9772) 

3.195 9 4 6 ~  
3.411 8 4 8 ~  

(0.9367) 

1.890 065 X 

1.977 6 9 9 ~  
(0.9557) 

7.260 291 x lo-' 
7.509 808 X lo-' 

(0.9668) 

1.843 487 x 
1.892 875 x 

(0.9739) 

3.128 872x lo-'' 
3.196 490 x lo-'' 

(0.9788) 

1.848 663 x 
1.96e 930 x 

(0.9427) 

8.974 726 x 
Y.350 954x 

(0.9598) 

2.794 300x lo-' 
2.881 643 x 

(0.9697) 

5.688 793 x 
5.828 048 x 

(0.9761) 

7.666 204 x lo-'' 
7.821 230x lo-'' 

(0.9802) 

The purpose of this work is to demonstrate the potential applications of the 
perturbation schemes we have developed. Our aims are to treat a general class of 
problems and provide a check for any specific problem involving a barrier solved by 
other approximation means such as the variational method. 
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